
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Transfer Learning for Textual Topic
Classificaton

Pavel Janata

Supervisor: Ing. Jiří Čermák, Ph.D.
Field of study: Open Informatics
Subfield: Computer and Informatic Science
May 2019

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

465810Personal ID number:Janata PavelStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Computer and Information ScienceBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Transfer Learning for Textual Topic Classificaton

Bachelor’s thesis title in Czech:

Transfer learning pro klasifikaci textu

Guidelines:
Recently a significant result was achieved by using transfer learning in natural language processing (NLP) [1]. The main
breakthrough was the use of a model pre-trained onWikipedia corpus to obtain state of the art performance on a classification
of textual data in a different dataset.
The student will verify that the performance of this approach is consistent on a different dataset containing textual data
along with their classes. The goal of the thesis will be accomplished by successfully performing the following steps:
• Study the state-of-the-art approaches to transfer learning in the field of NLP.
• Analyze existing datasets containing textual data and their corresponding class labels (e.g., Routers Dataset) and choose
the one most suitable for validating the approach.
• Use the existing pretrained model “Wikitext 103“ provided by FastAI. Fine-tune the model on the dataset chosen in the
previous task.
• Evaluate the performance of the model on this dataset and compare it to the results published in [1].

Bibliography / sources:
[1] Radford, Alec, et al. "Improving language understanding by generative pre-training." URL https://s3-us-west-2.
amazonaws. com/openai-assets/research-covers/language-unsupervised/language_ understanding_paper. pdf (2018).
[2] Howard, Jeremy, and Sebastian Ruder. "Universal language model fine-tuning for text classification." Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Vol. 1. 2018.

Name and workplace of bachelor’s thesis supervisor:

Ing. Jiří Čermák, Ph.D., Blindspot Solutions, Prague

Name and workplace of second bachelor’s thesis supervisor or consultant:

doc. Ing. Jiří Vokřínek, Ph.D., Artificial Intelligence Center, FEE

Deadline for bachelor thesis submission: 24.05.2019Date of bachelor’s thesis assignment: 14.01.2019

Assignment valid until: 30.09.2020

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Jiří Čermák, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgements
Most of all, I would like to thank my
supervisor, Jiří Čermák, who guided me
throughout writing this thesis as well as
to Štěpán Kopřiva and all the great people
at Blindspot.ai.

I am grateful to all my friends and fam-
ily: my parents and grandparents, my
sister, and my wonderful girlfriend for al-
ways supporting me.

Finally, I want to thank the follow-
ing coffee roasters, which provided me
with the much-needed fuel: Pražírna, dou-
bleshot, KK, Dos Mundos, and Coffee
Source.

Declaration
I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
the university theses.

. .
Pavel Janata
Prague, 24th May 2019

v

Abstract
The recent developments of Language
Modeling led to advances in transfer learn-
ing methods in Natural Language Process-
ing. Language Models pretrained on large
general datasets achieved state-of-the-art
results in a wide range of tasks. The Uni-
versal Language Model Fine-tuning repre-
sents an effective transfer learning method
for text classification. The goal of this the-
sis is to further test the robustness of this
method in scenarios, commonly found in
real-world applications.

Keywords: natural language processing,
text classification, artificial neural
network, machine learning, transfer
learning

Supervisor: Ing. Jiří Čermák, Ph.D.
Blindspot Solutions, Praha

Abstrakt
Nedávné vývoje v jazykových modelech
vedly k posunu v transfer learning me-
todách ve zpracování přirozeného jazyka.
Jazykové modely předtrénované na rozsáh-
lých obecných datasetech dosahují nejlep-
ších výsledků v celé řadě úkolů. Universal
Language Model Fine-tuning představuje
efektivní transfer learning metodu pro kla-
sifikaci texu. Cílem této práce je hlouběji
otestovat robustnost této metody ve scéná-
řích, které se běžně nacházejí při reálných
aplikacích.

Klíčová slova: zpracování přirozeného
jazyka, klasifikace textu, umělá
neuronová síť, strojové učení

Překlad názvu: Transfer learning pro
klasifikaci textu

vi

Contents
1 Introduction 1
1.1 Motivation . 1
1.2 Goals of the thesis 2
1.3 Thesis outline 2
2 Technical Background 3
2.1 Categorization of learning task
based on the training dataset 3

2.2 Artificial Neural Networks 3
2.2.1 Feedforward Neural Networks . 4
2.2.2 Recurrent Neural Networks . . . 5
2.2.3 Long Short Term Memory 5
2.2.4 Training of Artifical Neural
Networks . 8

2.3 Transfer learning 8
3 Universal Language Model
Fine-tuning 11
3.1 Structure of the model 11
3.2 Training of the model 11
3.2.1 Tokenization 12
3.2.2 Pretraining the Language
Model . 13

3.2.3 Fine-tuning 13
3.2.4 Classifier Training 14

4 Experimental setup 15
4.1 Classification dataset 15
4.1.1 Dataset Analysis 15
4.1.2 Baseline results 16

4.2 Hyperparameters 16
5 Experiments 19
5.1 Impact of the size of the training
dataset on the classification
accuracy . 19

5.2 Impact of the size of the training
dataset on the classification accuracy,
with the language model fine-tuned
on the whole dataset 20

5.3 Performance of the ULMFiT model
on an imbalanced dataset – with ten
classes unbalanced 21

5.4 Performance of the ULMFiT model
on an imbalanced dataset – with two
classes unbalanced 22

6 Conclusion 27
6.1 Future Work 27

A Detailed results of the
experiments 29
B Contents of the CD 33
C Bibliography 35

vii

Figures
2.1 Neuron Structure 4
2.2 Activation Functions 5
2.3 Structure of Feed Forward Neural
Network . 6

2.4 LSTM module 7

3.1 Structure of the ULMFiT model 12
3.2 ULMFiT Training Steps 12
3.3 Slanted triangular learning rates 14

4.1 Confusion matrix 18

5.1 Classification accuracies for
supervised and semi-supervised
ULMFiT . 20

5.2 Confusion matrix, class imbalance
10 . 22

5.3 Change of the error on a classes
with ten classes unbalanced 23

5.4 Confusion matrix class imbalance
2 . 24

5.5 Change of the error on a classes
with two classes unbalanced 25

Tables
4.1 Dataset overview 16
4.2 Dataset text example 17
4.3 Baseline classification results . . . 17

5.1 Classification accuracies for
supervised ULMFiT 20

5.2 Classification accuracies for
semi-supervised ULMFiT 21

A.1 All measured accuracies using
supervised ULMFiT 29

A.2 All measured accuracies using
semi-supervised ULMFiT 30

A.3 Class errors with 10 classes
unbalanced . 30

A.4 Class errors with 10 classes
unbalanced . 31

viii

Chapter 1
Introduction

1.1 Motivation

Natural Language Processing has been a subject of research for many decades,
with aims to improve human-computer interaction. As we generate more and
more data in all forms, apprehending it is too big of a task for any human.
Thus systems capable of comprehending texts in the natural language are
necessary in a wide array of real-life applications.

Text classification is one of the fundamental tasks in Natural Language
Processing. Its difficulty lies in recognizing the intricate semantic structures,
as well as the necessity of understanding the background information and
other complexities inherent in the natural languages. Deep learning proved to
be an effective approach in other NLP fields such as Machine Translation [27].
However, one of the main obstacles in advancing the classification systems
appears to be the lack of large labeled datasets.

As insufficient training data is a common problem in machine learning,
various techniques were proposed to solve this issue — one of which being
transfer learning, which has seen successful adoption in computer vision. This
method attempts to capture a knowledge gained by learning problem, to be
then reused on other, somewhat related problem. This allows for deployment
on much smaller datasets, as the model already poses some general knowledge,
which it gained on the previous task.

In recent years, there has been a lot of development in transfer learning
methods for Natural Language Processing. While in the past, it had been
used mainly for simple tasks as word embedding [10], the recent developments
in language modeling, enabled much more advanced applications of transfer
learning. Generally, these new models are trained on extensive unlabelled
datasets to be then applicable to a wide range of tasks.

Namely, the language model developed by OpenAI [15], which was trained
on text data scraped from the internet, has been able to achieve state-of-the-
art results on many language modeling datasets. They have also demonstrated
its ability to generate realistic and coherent texts, when prompt with an input
text. Such a tool could be useful, for instance, when writing a bachelor’s
thesis. However, due to concerns of the possible malicious uses, at the time
of publishing their paper, OpenAI has decided not to release the full trained

1

1. Introduction
models and make available to the public only smaller versions of it.

In this work, I have decided to use the Universal Language Model Fine-
tuning (ULMFiT), designed by Jeremy Howard and Sebastian Ruder from
fast.ai [8], as it is the best availible model for this task. Their general
Language Model trained on Wikitext-103 dataset (28,595 articles from English
Wikipedia), can be fine-tuned for specific classification tasks. It achieves the
state-of-the-art results on multiple classification datasets and with its use
of unsupervised Language Model fine-tuning, it promises good performance
even on semi-supervised datasets, with just a few labeled examples.

1.2 Goals of the thesis

In this work, I will test the robustness and dexterity of the Universal Language
Model Fine-tuning by evaluating it in several scenarios. For this, I have
selected the 20 Newsgroup dataset to serve as a base for my experiments.

I will measure the impact of the size of the training dataset on the model’s
performance. Since the model can be trained in semi-supervised mode, I will
measure the effectivity of this method and compare its results to the model
trained in fully supervised mode.

Furthermore, as unbalanced datasets are very prevalent in real-world appli-
cations, and often lead to undesirable behavior of Machine Learning models,
I will test the ULMFiT’s ability to cope with those scenarios, by introducing
a severe imbalance into the training dataset and analyzing its results on it.

1.3 Thesis outline

In the next chapter, I present a review of the methods and techniques
underlying the studied model. The Universal Language Model Fine-tuning,
which serves as the bases of this thesis, is described in Chapter 3. Chapter 4
describes the used dataset and setup of the experiments described in Chapter 5.
Finally, Chapter 6 contains the evaluation of the results of the experiments
along with propositions of possible future works.

2

Chapter 2
Technical Background

In this chapter, I will characterize some of the methods and concepts used
in this work. I present the basic terminology used further in this thesis, as
well as a brief description of artificial neural networks, focusing mainly on
the architectures related to this work.

2.1 Categorization of learning task based on the
training dataset

Learning tasks are often categorised based on the used training datasets [18] [2].
Supervised learning is a collection of tasks, where the data is labeled, i.e.,
each entry is provided with some desired output.

When the dataset lacks labels, we call it unsupervised learning. In such
tasks, new inputs can be categorised only based on the patterns inferred
from the training dataset. Typical instances of unsupervised learning are
clustering, anomaly detection, or language modeling, which is a task of
assigning probabilities to tokens in a sequence of words.

Finally, semi-supervised learning is a combination of above-mentioned
approaches. In the real world applications, obtaining a large labeled dataset
is very difficult, thus being able to use data where a small amount of labeled
entries is complement with larger quantities of unlabeled ones can be very
convenient.

In this work, I focus on the semi-supervised classification.

2.2 Artificial Neural Networks

Artificial Neural Network (ANN) is a machine learning system, first conceived
to mimic the function of biological neural networks. Today, we use many
different types of neural nets in a wide array of tasks such as classification,
regression, anomaly detection and many more.

In this section, I briefly cover the basic structure of neural networks and
outline some of their architectures. I describe Feedforward Neural Networks
(Section 2.2.1), one of the most basic types of ANNs then in Section 2.2.2
I present Recurrent Neural Networks, which allow processing of sequential

3

2. Technical Background.................................

Figure 2.1: Example of neuron used in feedforward neural networks with the
input vector x, vector of weights wj, output value oj and activation function ϕ
(for examples of commonly used activation function see Figure 2.2) [25].

data. In Section 2.2.3, I characterize the Long Short-Term Memory, a widely
used version of Recurrent Neural Network, which is used in models achieving
a state of the art results in speech recognition, natural language processing
or time series prediction.

2.2.1 Feedforward Neural Networks

Feedforward Neural Networks (FNN) [20] are composed of individual units
called neurons (shown in Figure 2.1). Each neuron can be viewed as functions
producing an output value oj given by the equation

oj = ϕ

(
n∑

i=0
xiwij + bj

)
(2.1)

where xi are input values, wij are the weights of the neuron, bj is its bias
term, and ϕ is some non-linear activation function. It is the non-linearity of
the activation function, which allows the neural networks to model complex
decision boundaries. Examples of some commonly used activation functions
can be found in Figure 2.2.

The neurons are structured into layers. Neural networks usually consist of
input and output layers with possibly multiple hidden layers in-between (see
Figure 2.3). In Feedforward Neural Networks, information travels only in the
direction from the input layer to the output layer, meaning that the output
of neurons connects to the inputs of neurons in the subsequent layer.

When an output of each neuron in a layer feeds into every neuron in the
next layer, we call those layers fully connected.

4

............................... 2.2. Artificial Neural Networks

Figure 2.2: Examples of commonly used activation functions [16].

2.2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) differ from regular Feedforward Neural
Networks in that the neurons do not always connect to the next layer, but
instead, they may be connected to one of the previous layers. These connec-
tions can form a type of memory allowing the network to retain knowledge
over multiple inputs. This makes it well suited for processing of sequential
data like text, speech or time series.

However, it was shown [3] that because of the manner in which they are
trained, the general Recurrent Neural Networks struggle to retain knowledge
over longer sequences of inputs. This led to the development of several RNN
architectures trying to fix this issue.

2.2.3 Long Short Term Memory

The Long Short Term Memory (LSTM), introduced by Hochreiter and Schmid-
huber [7], tries to solve the mentioned problems of the general RNNs. They
have structured the network (see Figure 2.4) into units, responsible for pro-
cessing the sequential data and keeping the inner state.

At each time step t, the LSTM unit receives an input vector xt as well
as its output from the previous time step, hidden state ht−1. To store its
internal state, it uses the cell state c. Inside, the LSTM module consists of
a memory cell, forgot gate, input gate, and an output gate. The forget and
input gates modify the cell state based on the module’s input. As the names

5

2. Technical Background.................................

Figure 2.3: A simple fully connected feedforward neural network with one hidden
layer [23].

suggest, the forget gate controls the conservation of the information in the
memory cell, and the input gate allows incorporation of new information.
Augmenting the previous cell state ct−1 by those gates produces new state ct.
The normalised copy of the cell state can then be filtered by the output gate,
which creates the output hidden state ht of the module.

The following notation is used in deriving the activation and output vectors.
Vectors and matrices are represented by bold letters, with matrices being in
upper case. The subscripts indicate the corresponding gate or time step.

t time step
c cell state vector
x input vector of the LSTM module
h hidden state vector
i activation vector of the input gate
f activation vector of the forget gate
o activation vector of the output gate
W weight matrices
b bias terms
σ sigmoid function
tanh hyperbolic tangent function
◦ element-wise multiplication

6

............................... 2.2. Artificial Neural Networks

Figure 2.4: LSTM module with the gates highlighted. The yellow markers denote
element-wise operations, and the orange blocks are layers with the corresponding
activation function – tanh denoting hyperbolic tangent and σ marking sigmoid
function (see Figure 2.2).

These equations describe the activation functions of the individual gates.
Note that as the input gate is composed of two separate layers, two sets of
weights and bias terms are used (denoted Wi, bi, Wi′ , and bi′).

ft = σ
(
Wf · [xt,ht−1] + bf

)
(2.2)

ot = σ
(
Wo · [xt,ht−1] + bo

)
(2.3)

it = σ
(
Wi · [xt,ht−1] + bi

)
◦ tanh

(
Wi′ · [xt,ht−1] + bi′

)
(2.4)

Using these the cell state ct of the LSTM module can be derived as

ct = (ct−1 ◦ ft) + it (2.5)

and finally the output hidden state ht as

ht = tanh(ct) ◦ ot (2.6)

Stacking multiple LSTM units can lead to each unit operating at different
time scale and therefore, capturing different levels of abstraction of the
input [6]. For example in text processing, one module can learn to recognise
relations between individual words, while other operates on the level of
sentences. This approach was adopted in the design of the ULMFiT model
which is used in this work.

7

2. Technical Background.................................
2.2.4 Training of Artifical Neural Networks

To train the network for a specific task, a set of observation is used, for which
an expected output is known. This data is then fed into the model, and its
output for each data point is compared to the ground truth. The expected
and actual outputs serve as input to the loss function, which measures the
dissimilarity of its inputs. In this work, the cross-entropy loss function LC is
used, which for a set of classes X is defined as

LC = −
∑
x∈X

yxln(px) (2.7)

where y are the expected outputs and p the predicted outputs.
The learning is achieved by adjusting the weights of the model. This is

done by the gradient descent method, which models the task of training the
network as an optimisation problem of finding a minimum of the loss function.
Each iteration t, the weights wj are updated using the following equation:

wij(t+ 1) = wij(t)− η ∂L

∂wij
(2.8)

where η is the learning rate and L the loss function. The backpropagation
algorithm [17] is used, to obtain the gradient of the loss function. In practice,
the gradient descent is not performed on the whole dataset at once, but
instead, it is split into batches of arbitrary size. This allows for much faster
iterations, and the algorithm can be more memory efficient.

Because of the recurrent connections in RNN, the standard backpropa-
gation algorithm cannot be used in this class of neural networks. Instead,
its generalised version called backpropagation through time is employed to
calculate the gradients of weights. The network is first unfolded through
time, and then the error is backpropagated through the standard feedforward
connections as well as through the recurrent connections. In this process,
updated weights are calculated for each time step. However, as only one
set of weight can be used in for the gradient descent, the values have to be
aggregated. This process often leads to vanishing gradient problem [3] [13],
as some of the weights can be very far from the optimal solution, but the
gradient being vanishingly small prevents them from changing their value.
Special architectures were proposed, to combat this problem, for example,
the LSTM discussed in Section 2.2.3.

2.3 Transfer learning

Transfer learning [12] refers to an effort of applying knowledge gained from a
problem to boost learning on a related problem. In neural networks (described
in Section 2.2), this is usually achieved by removing the last few layers, which
are generally most tied to the specific task, and reusing the parts responsible
for feature extraction and embedding.

8

................................... 2.3. Transfer learning

The most significant advantage of this approach is that training neural
networks from scratch can be very computationally expensive, thus being
able to train a model on a large dataset and then fine-tuned for a wide array
of different tasks is hugely beneficial. However, one of the obstacles which,
in some areas (e.g., Natural Language Processing [11]), proved to be difficult
to overcome, is the ability to retain the previously obtain knowledge, as too
aggressive training can destroy it.

9

10

Chapter 3
Universal Language Model Fine-tuning

Universal Language Model Fine-tuning (ULMFiT) is a state-of-the-art for
text classification. The model was introduced in a paper by Howard and
Ruder [8] from fast.ai.

In their work, they have managed to develop an effective transfer learning
design, allowing use of Language Models trained on large general datasets, to
then be fine-tuned for classification tasks on different, much smaller ones.

In this chapter, I first present the basic structure of the ULMFiT model
(in Section 3.1), and then I describe the process of creating the Language
Model (LM) end training the classifier in Section 3.2.

3.1 Structure of the model

The ULMFiT model used for classification (as shown in Figure 3.1c) consists
of two main units – the encoder and the linear classifier.

The encoder contains an embedding layer and three stacked LSTM modules.
The embedding layer receives an input word in one-hot encoding and passes
it as a 400-dimensional vector to the first LSTMs. The following modules
take the hidden state of the previous modules as their input. The hidden
state of the final LSTM is then fed into the linear classifier which consists
of a ReLU layer with 50 activations and the final softmax layer, whose size
depends on the number of classes in the classification problem.

The LSTM architecture used in this model is an implementation of AWD-
LSTM (which stands for ASGD Weight-Dropped LSTM), introduced by
Merity Keskar and Socher [9], which thanks to its many regularization
and optimization techniques, achieves state-of-the-art results in Language
Modeling tasks.

3.2 Training of the model

In this section, I will walk through the necessary steps, to train the language
model from scratch to the final classifier.

As shown in Figure 3.2, the training is split into three main steps. First,
the Language Model is trained on a large general dataset (see Section 3.2.2

11

3. Universal Language Model Fine-tuning..........................

(a) : Pre-training on
the general-domain
dataset - The out-
put of the last layer
corresponds to the
probability of the
next word in the se-
quence.

(b) : Fine-tuning
on the target-domain
dataset - The input
and output layer is
adjusted to fit the
size of dataset’s dic-
tionary.

(c) : Before the final
training step, the last
block is replaced by a
linear classifier.

Figure 3.1: A high-level overview of the structure of the model during the
training steps. The numbers in the brackets correspond to the size input/output
size of the layers. [5]

Figure 3.2: Overview of the training steps. [5]

for more details). The pretrained LM is then fine-tuned (Section 3.2.3) on
task’s target data, and finally, the classifier is trained (Section 3.2.4) on a
labeled dataset.

As the model is trained to perform different task in each of the training
steps, the structure also changes. The high-level overview of the model
throughout the learning steps can be seen in Figure 3.1.

3.2.1 Tokenization

When using the model, the training and validation datasets are first pre-
processed. The fastai.text library [1] provides all the necessary tools. It
introduces special words (tokens) into the dataset marking the beginnings of
the texts, capital letters, and words not present in the dictionary.

Then dictionary of used words is created, where each token is assigned a
unique id. Only the most common words are included in the dictionary, the
size of which can be configured. For my dataset, I have used a dictionary

12

.................................3.2. Training of the model

size of 30,000 words which was recommended in the documentation, and it
proved to be sufficient. Words not present in the dictionary are replaced by
the unknown token. Finally, all the words in the texts are mapped to their
ids and saved as arrays of integers.

3.2.2 Pretraining the Language Model

Howard and Ruder [8] published their model pre-trained on the huge Wikitext-
103 dataset which allows for its reuse in different tasks. However, the model
can be pre-trained on any other large enough datasets.

The idea of pre-training is to gain knowledge of the domain and capture it
in the universal Language Model, which could then be used on specific tasks.
While the Language Model is trained to predict the next word in a sequence,
it should also learn the general properties of the language.

The structure of the model during this step can be seen in Figure 3.1a.
First, all words, represented by their ids, are passed to the embedding layer,
using the one-hot encoding, outputting a 400-dimensional vector which is fed
into 3 LSTMs and then finally, to the decoder, which should predict the next
word, again, using the one-hot encoding. The cross-entorpy loss function is
used for this training.

3.2.3 Fine-tuning

Howard and Ruder [8] present fine-tuning of the Language Model as a crucial
stage for a successful transfer. As the target dataset most certainly differs
from the general dataset which was used for creating the LM. The structure of
the model remains mostly unchanged (see Figure 3.1b), except the encoding
and decoding layers are altered to fit the used dictionary. The Language
Model is then trained to predict the next world in a sequence on the target
task dataset, in the same manner as described in the previous section.

Although fine-tuning already was a popular approach in different fields of
machine learning (e.g., computer vision), there was no such effective method
in NLP [11]. Most of the previous attempts suffered from overfitting or catas-
trophic forgetting. Howard and Ruder [8] introduced several improvements,
which make this method viable.

One of them is discriminative fine-tuning, which uses different learning
rates for different layers of the model, compared to the traditional approach,
where a single value is used for all layers. This method is based on the
observation, that different layers gain a different kind of knowledge. They
have achieved the best results by setting the LR of the last layer to some
specific value (0.01 in their case) and then setting the learning rate of each
preceding layer to 1

2.6 times the LR of the subsequent layer.
Another improvement they have introduced are slanted triangular learning

rates, shown in Figure 3.3, which are modified version of triangular learning
rates introduced by Leslie N. Smith [22]. Instead of using a constant value
for learning rates, in this technique, they are first linearly increased for faster

13

3. Universal Language Model Fine-tuning..........................

Figure 3.3: Schedule of learning rates when training the classifier for 35 epochs
with 353 iterations per epoch.

convergence into the desired region of the parameter space, and then gradually
decreased to gain the necessary precision.

Because, during the fine-tuning the Language Model is again trained only
to predict next word in a sequence, it does not require a labeled dataset. This
allows for a semi-supervised learning use case.

3.2.4 Classifier Training

Finally, the model is trained for the target classification task. For this, two
additional linear blocks are added (Figure 3.1c), each with batch normalization
and dropouts [8]. ReLU activations are used in the intermediate layer, and
softmax activations provide probability distribution over target classes. The
dimension of the last layer then corresponds to the number of classes in the
target task.

To avoid catastrophic forgetting and losing knowledge the model has gained
during previous stages, Howard and Ruder [8] used a technique called gradual
unfreezing, where at the beginning only the last layer of the model is trained,
and weights of the other layers are frozen. Each epoch another layer is
unfrozen until the whole model is being trained.

14

Chapter 4
Experimental setup

In this chapter I present the setup of the experiments described in Chapter 5
as well as the used 20 Newsgroups dataset.

4.1 Classification dataset

Howard and Ruder [8] conducted experiments on several datasets, including
some intended for topic classification (AG news and DBpedia [28]). In my
experiments, I mainly wanted to test the robustness of the model. For this, I
have chosen the 20 Newsgroups dataset.

Specifically, I have used corpus created by Ana Cardoso Cachopo and
published as a part of her Ph.D [4] thesis. She did some preprocessing on the
data, like removing special characters, replacing multiple white spaces with a
single space, transforming it to lower case, and prepending title to each text.
The reason I chose her version of the datasets is that she also provides results
of some of the common classification methods on this dataset, which I use as
a baseline (see Section 4.1.2) in my experiments.

4.1.1 Dataset Analysis

There are almost 19,000 texts, each belonging into one of the 20 categories.
The classes are quite well balanced as shown in Table 4.1. The corpus uses an
unusual split, where about 40 % of the data is used for validation. However,
because this split has been used in other works before, I have decided not to
change it.

Scikit-learn [14], which also provides tools for working with this dataset [21],
recommend striping the texts of their metadata, such as headers, footers,
and quotes. However, after doing this, I have concluded, that especially
deleting the quotations, removes too much of the information, to the point,
when a considerable amount of texts become empty. Example of a text with
quotations striped is shown in Table 4.2.

15

4. Experimental setup

Class
Number of

training texts
Number of

validation texts
alt.atheism 480 319

comp.graphics 584 389
comp.os.ms-windows.misc 572 394
comp.sys.ibm.pc.hardware 590 392

comp.sys.mac.hardware 578 385
comp.windows.x 593 392

misc.forsale 585 390
rec.autos 594 395

rec.motorcycles 598 398
rec.sport.baseball 597 397
rec.sport.hockey 600 399

sci.crypt 595 396
sci.electronics 591 393

sci.med 594 396
sci.space 593 394

soc.religion.christian 598 398
talk.politics.guns 545 364

talk.politics.mideast 564 376
talk.politics.misc 465 310
talk.religion.misc 377 251

Table 4.1: Amount of training and validations texts per class in the 20 News-
groups dataset

4.1.2 Baseline results

Along with the dataset Ana Cardoso Cachopo [4] published results of some
classification methods on it. The measured accuracies are shown in Table 4.3,
together with the classification result of the ULMFiT model trained on the
whole unaltered dataset. The acquired value is an average accuracy on the
validation set achieved over ten trainings. Example of the classification result
of the ULMFiT model is also shown in the confusion matrix in Figure 4.1.

4.2 Hyperparameters

To ensure comparable results, I have done no special tuning of the ULMFiT
model for this dataset and preserved mostly the same values of hyperparame-
ters as Howard and Ruder [8] used. I have kept the same batch size of 64,
and same base learning rates (0.004 for the language model fine-tuning and
0.01 for the classifier training). The dictionary size for the tokenization (see
Section 3.2.1) was set to 30,000. I have fine-tuned the model and trained
the classifier for 35 epochs. The reported accuracies are the best classifica-
tion accuracies achieved during the training. Each experiment was repeated
multiple times to ensure statistical significance.

16

................................... 4.2. Hyperparameters

This appeared today in the
> The Japan Economic Journal reported
> GM plans to build a Toyota-badged
> car in the US for sale in Japan.
> Bruce MacDonald, VP of GM Corporate
> Communications, yesterday confirmed
> that GM President and CEO Jack Smith
> had a meeting recently with Tatsuro
> Toyoda, President of Toyota. this
> meeting the two discussed business
> opportunities to increase GM exports
> to Japan, including further
> component sales as well as completed
> vehicle sales, parts sales, the two
> presidents agreed conceptually to
> pursue an arrangement whereby GM
> would build a Toyota-badged, right-
> hand drive vehicle in the US for
> sale by Toyota in Japan. A working
> group has been formed to finalize
> model specifications, exact timing
> and other details.

This appeared today in the

(a) Text with
quotation

(b) Text with
quotation striped

Table 4.2: Example of one of the texts before (a) and after (b) removing the
quotations. Due to the evident loss of information, I have decided to preserve
the quotations in the dataset.

Vector Method 72.40 %
kNN (k = 10) 75.93 %
Centroid (Normalized Sum) 78.85 %
Naive Bayes 81.03 %
SVM (Linear Kernel) 82.84 %
ULMFiT 87.92 %

Table 4.3: Results of other classification methods on 20 Newsgroups dataset [4],
compared to ULMFiT.

17

4. Experimental setup

Figure 4.1: Confusion matrix of the classification result produced by the model
on the 20 Newsgroups dataset. The misclassification rate is in this case 11.8 %,
however, as the newsgroups are arranged into hierarchies, some of them have
significant thematical overlap like the comp.* hierarchy or the talk.politics.misc
newsgoup which is consistently misclassified as talk.politics.guns.

18

Chapter 5
Experiments

In my experiments, I focused on the flexibility and resilience of the ULMFiT
model. Howard and Ruder [8] in their work used relatively large corpora
usually with just a few classes. My goal was to test if the model can achieve
as good results on harder datasets. For this, I designed the following four
experiments. In the first two experiments, I have tested the impact of the
size of the training dataset, on the performance of the model, by training it
on gradually smaller subsets of the used dataset (described in Section 4.1). In
the second experiment presented in Section 5.2, I trained it in semi-supervised
mode, by fine-tuning (see Section 3.2.3) it on the full dataset, and only
training the classifier on its subsets.

Finally, in the last two experiments (Sections 5.3 to 5.4), I have introduced
an artificial imbalance to the dataset, by removing training data from a
selected subset of the classes.

More detailed results of all experiments, can also be found in Appendix A.

5.1 Impact of the size of the training dataset on
the classification accuracy

This experiment was conducted to test the robustness of the transfer learning
in NLP. I have trained the pre-trained model on gradually smaller datasets
and measured its accuracy. The smaller training data were obtained by
randomly selecting subsets of fixed sizes, from each class. I have tested the
model on 3

4 ,
1
2 ,

1
4 , and

1
8 of the original class sizes.

I have repeated this experiment ten times, each time new random subset
of the original dataset was generated. The results reported in Table 5.1
are averages over the ten runs; the nonaggregated results can be found in
Table A.1.

The results presented in Figure 5.1 show that even with only half of the
training data, the model, achieves an average accuracy of 86.26 %, and
performs consistently better than the baseline SVN method on full dataset
(accuracy of 82.84 %). Moreover even after removing 7

8 of the training data,
the model still achieves accuracies above 70 %, most of the times.

19

5. Experiments

Figure 5.1: Classification accuracies for supervised and semi-supervised ULMFiT
on different relative amounts of training data

Relative
size Number of texts

Average accuracy
on the validation data

Standard
deviation

1.0 11293 87.92 % 0.302 %
0.75 8471 87.67 % 0.542 %
0.5 5644 86.26 % 1.143 %

0.25 2822 80.85 % 1.159 %
0.125 1411 69.93 % 2.266 %

Table 5.1: Average classification accuracies of the model trained on datasets
with different numbers of training examples.

5.2 Impact of the size of the training dataset on
the classification accuracy, with the language
model fine-tuned on the whole dataset

Obtaining labeled datasets, usually means humans annotating it, which can
be very costly (unless it is done by students). Hence, it would be useful, to
also gain some knowledge from unlabeled data, which are usually much easier
to acquire.

ULMFiT enables semi-supervised training by fine-tuning (see Section 3.2.3)
it on a partially annotated corpus and using only its labeled subset to train
the final classifier. I have conducted an experiment to determine, how effective
the model is at gaining knowledge using this method.

The setup was identical to the previous experiment, except that for the
fine-tuning step, the whole dataset, with its labeles removed was used. As
before, I have repeated this experiment 10 times. The Table 5.2 shows the

20

.. 5.3. Performance of the ULMFiT model on an imbalanced dataset – with ten classes unbalanced

Relative
size Number of texts

Average accuracy
on the validation data

Standard
deviation

1.0 11293 87.92 % 0.302 %
0.75 8471 87.45 % 0.351 %
0.5 5644 86.91 % 0.517 %

0.25 2822 84.74 % 0.841 %
0.125 1411 81.52 % 0.819 %

Table 5.2: Average classification rates of the model fine-tuned on the full dataset,
but with the classifier trained on its subset.

average achieved accuracies. The Figure 5.1, which compares results of the
first two experiments, shows that the model performs noticeably better, when
trained in this manner.

The results on the larger data sizes do not differ significantly from the
previous experiment with an average accuracy of 86.91 % when trained on
half of the dataset compared to 86.26 % achieved in fully supervised setup on
the same data size. However, whereas before there was a sharp drop off after
75 % of the training data was removed, when the semi-supervised training was
used, the classification rate decreases very gradually. Even on the smallest
dataset, with only about 70 training examples per class, the accuracy was
consistently above 80 %.

5.3 Performance of the ULMFiT model on an
imbalanced dataset – with ten classes unbalanced

Class imbalance is often the main obstacle in utilizing machine learning
models in real-life application. In extreme cases, the underrepresentation of
some classes in the training data can lead to the model learning to overlook
them, as ignoring them, may not result in a significant enough increase in
the error rate.

I have introduced an artificial class imbalance, by selecting ten classes, from
which I gradually removed training data, while leaving the other ten classes
unaltered. In a similar manner to the previous experiments, I have trained
the model on the dataset with 3

4 ,
1
2 ,

1
4 , and

1
8 of the texts from selected classes

left. I have run the experiment five times, on each size of the dataset.
The Figure 5.3 shows that although the classification rate on the unbalanced

classes has lowered (by up to 25 % in some cases), the model does never learn
to ignore them. The confusion matrix in Figure 5.2 further shows that most
of the error on the unbalanced classes comes from the model misclassifying
them into one of the related classes. As the 20 Newsgroups dataset, has a lot
of thematically similar categories (e.g., alt.atheism, soc.religon.christian and
talk.religion.misc), when some of them are unbalanced, the model does not
have enough data to learn to recognise the subtle differences between them.

21

5. Experiments

Figure 5.2: Confusion matrix, obtained after training the model on a dataset
where artificial imbalance have been introduced. From the classes highlighted
in red, only 1

8 of the original training data has been left. On those classes the
misclassification rate is notably higher compared to the results of the model
trained on full the dataset, shown in Figure 4.1. However, most of the error
happens on thematically overlapping classes.

5.4 Performance of the ULMFiT model on an
imbalanced dataset – with two classes unbalanced

The previous experiment showed that the model handles quite well even
dataset, with half of the classes significantly smaller. However, the sum of
the smaller classes still represented a significant portion of the training data.
So to further test the potential problems described in the previous section, in
this experiment I have lowered the number of unbalanced classes to two, as
this should further encourage the model to learn to overlook them. Otherwise,
the setup remained unchanged.

The results in Figures 5.4 to 5.5 show similar behaviour as before. Even
when each of the unbalanced classes made up only about 0.72 % of the

22

.. 5.4. Performance of the ULMFiT model on an imbalanced dataset – with two classes unbalanced

Figure 5.3: The change in the misclassification rate of the model on each class
compared to the error rate of the model trained on the full dataset. The red
marks the classes from which the data has been gradually removed (leaving 3

4 ,1
2 ,

1
4 , and

1
8 of the original data)

training dataset, the model was able to classify them correctly with 60.32 and
67.86 percent accuracy respectively. Both of the unbalanced classes were also
unbalanced in the previous experiment (Section 5.3), and comparison of these
two experiments shows, that the error rates on those are very similar, which
indicates, that the number of unbalanced classes does not have a significant
impact on the behaviour of the model.

Figure 5.4 shows that as in the previous experiment, most of the un-
balanced classes tend to be assigned to some of the thematically related
class; comp.windows.x often being confused with other newsgroups from the
comp.* hierarchy and the soc.religion.christian newsgroup being mistaken for
alt.atheism and talk.religion.misc.

23

5. Experiments

Figure 5.4: Confusion matrix, obtained after training the model on a dataset
where artificial imbalance have been introduced. From the classes highlighted
in red, only 1

8 of the original training data has been left. On those classes the
misclassification rate is notably higher compared to the results of the model
trained on full the dataset, shown in Figure 4.1. However, most of the error
happens on thematically overlapping classes.

24

.. 5.4. Performance of the ULMFiT model on an imbalanced dataset – with two classes unbalanced

Figure 5.5: The change in the misclassification rate of the model on each class
compared to the error rate of the model trained on the full dataset. The red
marks the classes from which the data has been gradually removed (leaving 3

4 ,1
2 ,

1
4 , and

1
8 of the original data.

25

26

Chapter 6
Conclusion

The ULMFiT promised a universal method for text classification, easily
applicable on any dataset. In my experiments, I tried to simulate some
conditions commonly found in real-life situations.

As large labeled datasets are in practice very rare, the ability of the model
to learn the task from a small amount of training data is crucial. Since, the
pretrained ULMFiT already possess some domain knowledge, it was able to
achieve 80.85 % validation accuracy, even when trained with less than 150
text examples per class, only a quarter of the original dataset, compared to
the 87.92 % achieved on the full dataset. Moreover, if the model is allowed to
use unsupervised fine-tuning on the rest of the dataset, its accuracy improves
by 3.89 %.

Furthermore, when trained on just 70 texts per class (1411 texts in total),
the difference in measured accuracies compared to the previous setup grew to
11.59 %. The results confirm conclusions presented by Howard and Ruder [8]
as they show, that the model can successfully gain knowledge from the
unsupervised Language Model fine-tuning on the target task dataset. This,
in combination with the supervised classifier training, makes it a viable semi-
supervised method for text classification on datasets with a small number of
labeled examples, but with access to a larger amount of unlabeled data.

As unbalanced training datasets pose a significant challenge in all classifica-
tion tasks, it was essential to evaluate the ULMFiT model in such situations.
In the experiments described in Sections 5.3 to 5.4, I’ve introduced an artifi-
cial class imbalance to the training dataset, by deleting data from selected
sets of classes. As expected, the error on these has increased, but they were
misclassified mostly to the thematically related classes.

Overall the model proved its dexterity and robustness over all tested tasks.
The good qualities of the model are further supported by the reports of its
deployment in a real-world production environment [19].

6.1 Future Work

Using pre-trained Language Models for text classification has great prospects.
Possible ways of improving this method might involve usage of more complex
models trained on even larger datasets, like the one presented by OpenAI [15].

27

6. Conclusion......................................
However, as Howard and Ruder [8] showed, the main challenge lies in the
careful transfer of the model to the target task. But with the use of newly
gained knowledge, it might be viable, and it is definitely an interesting
direction for possible study.

Another possibility is expanding these methods to other languages. As
the ULMFiT model was trained on texts from Wikipedia, which is available
basically in every language, obtaining the training dataset, would be easy.
Nonetheless, the relative sizes of non-English Wikipedias compared to the
English version can vary greatly. For example, the number of articles on Czech
Wikipedia is only about one-thirteenth of the ones on its English variant [26],
while being generally much shorter. But as Czech is the 14th most common
language on the internet, according to the W3Techs [24], web scraping might
be a possible approach of obtaining extensive Language Modeling dataset.

However, one of the possible challenges of using ULMFiT model on other
languages might be the much more complicated grammar and sentence
structure.

28

Appendix A
Detailed results of the experiments

The following tables contain more complete results of the experiments de-
scribed in Chapter 5.

Relative amounts of training data
1 0.75 0.5 0.25 0.125

0 87.160835 87.914632 85.092499 80.308195 69.227414
1 88.223817 87.523094 86.423896 80.806657 71.161864
2 87.807642 86.651873 86.996770 83.227470 71.298274
3 88.207577 88.134526 86.752232 79.188221 72.445672
4 87.947029 88.178198 86.602650 80.259772 70.791102

5 87.938089 87.058472 83.267818 82.513815 68.779007
6 88.187609 87.406726 87.131258 80.458106 73.018356
7 88.056997 88.213705 87.196342 79.690593 66.413281
8 87.692025 88.361035 86.544611 80.874767 70.388140
9 88.000813 87.304882 86.577849 81.171910 65.811565

avg 87.922243 87.674714 86.258593 80.849951 69.933468
std 0.302300 0.542363 1.142954 1.158793 2.266158

Table A.1: Accuracies measured in the experiment described in Section 5.1

29

A. Detailed results of the experiments

Relative amounts of training data
1 0.75 0.5 0.25 0.125

0 87.160835 87.383913 85.794978 83.668693 81.707504
1 88.223817 87.916595 86.762542 85.688351 80.610170
2 87.807642 87.178675 86.570723 84.768064 80.977576
3 88.207577 87.462209 87.182601 83.416468 82.076774
4 87.947029 87.265326 86.869639 85.731833 80.338175

5 87.938089 87.383855 87.165173 84.760113 81.144016
6 88.187609 87.307489 86.673243 83.840033 82.111950
7 88.056997 88.248552 87.508883 84.917638 80.923438
8 87.692025 87.362567 86.841745 85.943018 83.100916
9 88.000813 86.971771 87.763805 84.733168 82.226157

avg 87.922243 87.448095 86.913333 84.746738 81.521668
std 0.302300 0.350518 0.516665 0.840956 0.819113

Table A.2: Accuracies measured in the experiment described in Section 5.2

Relative amounts of training data
Class 1 0.75 0.5 0.25 0.125

alt.atheism 19.56 21.57 24.33 37.05 46.58
comp.graphics 17.74 17.28 17.22 19.28 17.02

comp.os.ms-windows.misc 23.05 22.89 22.39 21.78 20.00
comp.sys.ibm.pc.hardware 21.17 18.57 20.66 14.80 17.96

comp.sys.mac.hardware 13.45 16.52 16.52 26.130 30.75
comp.windows.x 17.81 17.40 20.51 26.28 34.59

misc.forsale 9.28 10.92 12.92 23.74 29.74
rec.autos 10.68 9.06 11.59 8.41 11.19

rec.motorcycles 4.72 6.98 6.83 10.20 15.27
rec.sport.baseball 4.84 4.53 4.84 4.53 4.94
rec.sport.hockey 1.80 2.01 1.80 1.95 2.41

sci.crypt 7.12 6.01 6.26 5.51 6.41
sci.electronics 19.03 18.02 22.39 31.55 37.86

sci.med 8.74 10.05 11.21 17.68 22.58
sci.space 7.21 6.60 7.06 12.64 17.46

soc.religion.christian 7.19 7.69 8.54 14.82 19.35
talk.politics.guns 10.88 10.33 13.46 16.32 18.74
talk.politics.mideast 11.91 13.94 11.65 12.02 11.06

talk.politics.misc 38.77 37.55 37.10 36.57 37.75
talk.religion.misc 27.57 23.98 28.05 21.99 23.51

Table A.3: Average error per class with 10 classes unbalanced (in bold) as
described in Section 5.3.

30

............................A. Detailed results of the experiments

Relative amounts of training data
Class 1 0.75 0.5 0.25 0.125

alt.atheism 19.56 20.50 20.25 24.51 20.94
comp.graphics 17.74 17.53 16.97 17.38 18.82

comp.os.ms-windows.misc 23.05 23.60 23.25 28.78 24.98
comp.sys.ibm.pc.hardware 21.17 17.91 20.61 18.11 20.41

comp.sys.mac.hardware 13.45 15.27 15.58 15.64 14.70
comp.windows.x 17.81 17.19 18.52 25.92 30.92

misc.forsale 9.28 9.85 8.51 8.46 8.72
rec.autos 10.68 8.71 9.11 9.52 9.72

rec.motorcycles 4.72 4.77 6.33 5.38 5.43
rec.sport.baseball 4.84 4.74 5.29 4.28 5.39
rec.sport.hockey 1.80 1.55 1.70 1.90 1.65

sci.crypt 7.12 5.91 5.91 5.30 6.46
sci.electronics 19.03 18.12 17.71 16.69 15.27

sci.med 8.74 10.40 8.54 8.99 8.69
sci.space 7.21 6.29 7.92 6.75 6.65

soc.religion.christian 7.19 6.68 9.05 13.37 22.06
talk.politics.guns 10.88 10.16 8.74 8.35 6.65

talk.politics.mideast 11.91 12.23 11.91 11.06 9.89
talk.politics.misc 38.77 37.42 36.97 39.61 39.61
talk.religion.misc 27.57 25.98 25.42 24.06 27.17

Table A.4: Average error per class with 2 classes unbalanced (in bold) as
described in Section 5.4.

31

32

Appendix B
Contents of the CD

/
src

model_structure
scripts
fastai_scripts
fresh_models
notebooks...........Jupyter notebooks used for data evaluation
experiments.............Files generated during the experiments

exp1
exp2
exp3
exp4

thesis...................................LATEXcodes of this thesis
figures
chapters

33

34

Appendix C
Bibliography

[1] Fast AI. Nlp preprocessing. https://docs.fast.ai/
text.transform.html#NLP-Preprocessing. Accessed: 2019-04-11.

[2] E. Alpaydin. Introduction to Machine Learning. Adaptive Computation
and Machine Learning series. MIT Press, 2014.

[3] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies
with gradient descent is difficult. Trans. Neur. Netw., 5(2):157–166,
March 1994.

[4] Ana Cardoso-Cachopo. Improving Methods for Single-label Text Catego-
rization. PhD thesis, Instituto Superior Tecnico, Universidade Tecnica
de Lisboa, 2007.

[5] Sandra Faltl, Michael Schimpke, and Constantin Hackober. Ulmfit: State-
of-the-art in text analysis. https://humboldt-wi.github.io/blog/
research/information_systems_1819/group4_ulmfit/. Accessed:
2019-04-15.

[6] Michiel Hermans and Benjamin Schrauwen. Training and analysing deep
recurrent neural networks. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 26, pages 190–198. Curran Associates,
Inc., 2013.

[7] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9:1735–80, 12 1997.

[8] Jeremy Howard and Sebastian Ruder. Fine-tuned language models for
text classification. CoRR, abs/1801.06146, 2018.

[9] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing
and optimizing LSTM language models. CoRR, abs/1708.02182, 2017.

[10] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. Distributed representations of words and phrases and their compo-
sitionality. In Advances in neural information processing systems, pages
3111–3119, 2013.

35

https://docs.fast.ai/text.transform.html#NLP-Preprocessing
https://docs.fast.ai/text.transform.html#NLP-Preprocessing
https://humboldt-wi.github.io/blog/research/information_systems_1819/group4_ulmfit/
https://humboldt-wi.github.io/blog/research/information_systems_1819/group4_ulmfit/

C. Bibliography
[11] Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu, Lu Zhang, and Zhi

Jin. How transferable are neural networks in NLP applications? CoRR,
abs/1603.06111, 2016.

[12] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions
on Knowledge and Data Engineering, 22(10):1345–1359, Oct 2010.

[13] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty
of training recurrent neural networks. CoRR, abs/1211.5063, 2012.

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[15] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever. Language models are unsupervised multitask learners.
2019.

[16] Abhishek Rao. Painting Classification with Layered Neural Network.
PhD thesis, The Pennsylvania State University, 07 2015.

[17] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learn-
ing representations by back-propagating errors. Cognitive modeling,
5(3):1, 1988.

[18] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd
edition, 2009.

[19] Oleksandr Savsunenko. Fast.ai in production. real-word text classifica-
tion with ulmfit. https://hackernoon.com/fast-ai-in-production-
real-word-text-classification-with-ulmfit-199769be2a6. Ac-
cessed: 2019-05-21.

[20] Jürgen Schmidhuber. Deep learning in neural networks: An overview.
CoRR, abs/1404.7828, 2014.

[21] Scikit-learn. Scikit-learn - the 20 newsgroups text dataset. https:
//scikit-learn.org/0.19/datasets/twenty_newsgroups.html. Ac-
cessed: 2019-04-11.

[22] Leslie N. Smith. No more pesky learning rate guessing games. CoRR,
abs/1506.01186, 2015.

[23] Prof. Jimeng Sun. Feedforward neural networks. https://
www.cc.gatech.edu/~san37/post/dlhc-fnn/. Accessed: 2019-05-14.

[24] W3Techs. Usage of content languages for websites. https://
w3techs.com/technologies/overview/content_language/all. Ac-
cessed: 2019-05-21.

36

https://hackernoon.com/fast-ai-in-production-real-word-text-classification-with-ulmfit-199769be2a6
https://hackernoon.com/fast-ai-in-production-real-word-text-classification-with-ulmfit-199769be2a6
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
https://www.cc.gatech.edu/~san37/post/dlhc-fnn/
https://www.cc.gatech.edu/~san37/post/dlhc-fnn/
https://w3techs.com/technologies/overview/content_language/all
https://w3techs.com/technologies/overview/content_language/all

..................................... C. Bibliography

[25] Wikipedia, the free encyclopedia. Artificial neuron
model. https://commons.wikimedia.org/wiki/File:
ArtificialNeuronModel_english.png. Accessed: 2019-05-14.

[26] Wikipedia, the free encyclopedia. List of wikipedias. https://
en.wikipedia.org/wiki/List_of_Wikipedias. Accessed: 2019-05-21.

[27] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu,
Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff
Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural machine
translation system: Bridging the gap between human and machine
translation. CoRR, abs/1609.08144, 2016.

[28] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolu-
tional networks for text classification. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems 28, pages 649–657. Curran Associates,
Inc., 2015.

37

https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png
https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png
https://en.wikipedia.org/wiki/List_of_Wikipedias
https://en.wikipedia.org/wiki/List_of_Wikipedias

	Introduction
	Motivation
	Goals of the thesis
	Thesis outline

	Technical Background
	Categorization of learning task based on the training dataset
	Artificial Neural Networks
	Feedforward Neural Networks
	Recurrent Neural Networks
	Long Short Term Memory
	Training of Artifical Neural Networks

	Transfer learning

	Universal Language Model Fine-tuning
	Structure of the model
	Training of the model
	Tokenization
	Pretraining the Language Model
	Fine-tuning
	Classifier Training

	Experimental setup
	Classification dataset
	Dataset Analysis
	Baseline results

	Hyperparameters

	Experiments
	Impact of the size of the training dataset on the classification accuracy
	Impact of the size of the training dataset on the classification accuracy, with the language model fine-tuned on the whole dataset
	Performance of the ULMFiT model on an imbalanced dataset – with ten classes unbalanced
	Performance of the ULMFiT model on an imbalanced dataset – with two classes unbalanced

	Conclusion
	Future Work

	Detailed results of the experiments
	Contents of the CD
	Bibliography

